skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gunaydin, Delal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hydraulic fractures that grow in close proximity to one an other interact and compete for fluid that is injected to the wellbore, leading to dominance of some fractures and suppression of others. This phenomenon is ubiquitously encountered in stimulation of horizontal wells in the petroleum industry and it also bears possible relevance to emplacement of multiple laterally propagating swarms of magma‐driven dykes. Motivated by a need to validate mechanical models, this paper focuses on laboratory experiments and their comparison to simulation results for the behavior of multiple, simultaneously growing hydraulic fractures. The experiments entail the propagation of both uniformly and nonuniformly spaced hydraulic fractures by injection of glucose or glycerin‐based solutions into transparent (polymethyl methacrylate) blocks. Observed fracture growth is then compared to predictions of a fully coupled, parallel‐planar 3D hydraulic fracturing simulator. Results from experiments and simulations confirm the suppression of inner fractures when the spacing between the fractures is uniform. For certain non‐uniform spacing, both experiments and simulations show mitigated suppression of the central fractures. Specifically, the middle fracture in a 5‐fracture array grows nearly equally to the outer fractures from the beginning of injection. Furthermore, with some delay, the other two fractures that are suppressed with uniformly spaced configurations grow, and eventually achieve a velocity exceeding the other three fractures in the array. Hence, these experiments give the first laboratory evidence of a model‐predicted behavior wherein certain nonuniform fracture spacings result in drastic increases in the growth of all fractures within the array. 
    more » « less